Question Q1.13

Can you find two vectors with different lengths that have a vector sum of zero? What length restrictions are required for three vectors to have a vector sum of zero? Explain your reasoning.

Solution

The only way to have two vectors sum to zero is if they are equal and opposite.

$$
\left.\left.\begin{array}{c}
\mathbf{v}_{1}+\mathbf{v}_{2}=\mathbf{0} \\
\left\langle v_{1 x}, v_{1 y}, v_{1 z}\right\rangle+\left\langle v_{2 x}, v_{2 y}, v_{2 z}\right\rangle=\langle 0,0,0\rangle \\
\left\langle v_{1 x}+v_{2 x}, v_{1 y}+v_{2 y}, v_{1 z}+v_{2 z}\right\rangle=\langle 0,0,0\rangle \\
v_{1 x}+v_{2 x}=0 \\
v_{1 y}+v_{2 y}=0 \\
v_{1 z}+v_{2 z}=0
\end{array}\right\}, \begin{array}{c}
v_{2 x}=-v_{1 x} \\
v_{2 y}=-v_{1 y} \\
v_{2 z}=-v_{1 z}
\end{array}\right\}, ~ \begin{gathered}
\\
\left\{\mathbf{v}_{1}=\left\langle v_{1 x}, v_{1 y}, v_{1 z}\right\rangle\right. \\
\mathbf{v}_{2}=\left\langle-v_{1 x},-v_{1 y},-v_{1 z}\right\rangle=-\left\langle v_{1 x}, v_{1 y}, v_{1 z}\right\rangle=-\mathbf{v}_{1}
\end{gathered}
$$

For three vectors to sum to zero, it's necessary to have

$$
\left.\begin{array}{c}
\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}=\mathbf{0} \\
\left\langle v_{1 x}, v_{1 y}, v_{1 z}\right\rangle+\left\langle v_{2 x}, v_{2 y}, v_{2 z}\right\rangle+\left\langle v_{3 x}, v_{3 y}, v_{3 z}\right\rangle=\langle 0,0,0\rangle \\
\left\langle v_{1 x}+v_{2 x}+v_{3 x}, v_{1 y}+v_{2 y}+v_{3 y}, v_{1 z}+v_{2 z}+v_{3 z}\right\rangle=\langle 0,0,0\rangle \\
v_{1 x}+v_{2 x}+v_{3 x}=0 \\
v_{1 y}+v_{2 y}+v_{3 y}=0 \\
v_{1 z}+v_{2 z}+v_{3 z}=0 \\
v_{3 x}=-v_{1 x}-v_{2 x} \\
v_{3 y}=-v_{1 y}-v_{2 y} \\
v_{3 z}=-v_{1 z}-v_{2 z}
\end{array}\right\}
$$

The first two vectors are free to be anything,

$$
\begin{aligned}
& \mathbf{v}_{1}=\left\langle v_{1 x}, v_{1 y}, v_{1 z}\right\rangle \\
& \mathbf{v}_{2}=\left\langle v_{2 x}, v_{2 y}, v_{2 z}\right\rangle
\end{aligned}
$$

but the third vector is constrained.

$$
\begin{aligned}
\mathbf{v}_{3} & =\left\langle v_{3 x}, v_{3 y}, v_{3 z}\right\rangle \\
& =\left\langle-v_{1 x}-v_{2 x},-v_{1 y}-v_{2 y},-v_{1 z}-v_{2 z}\right\rangle \\
& =-\left\langle v_{1 x}+v_{2 x}, v_{1 y}+v_{2 y}, v_{1 z}+v_{2 z}\right\rangle
\end{aligned}
$$

